Dominating Cartesian Products of Cycles

نویسندگان

  • Sandi Klavzar
  • Norbert Seifter
چکیده

Let y(G) be the domination number of a graph G and let G U H denote the Cartesian product of graphs G and H. We prove that y(X) = (nr= ,nr)/(2m + l), where X = C1 0 CZ 0 ... 0 C, and all nt = ICkIr 1 < k < m, are multiples of 2m + 1. The methods we use to prove this result immediately lead to an algorithm for finding minimum dominating sets of the considered graphs. Furthermore the domination numbers of products of two cycles are determined exactly if one factor is equal to C3, C4 or C5, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎d...

متن کامل

On independent domination numbers of grid and toroidal grid directed graphs

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...

متن کامل

Perfect Dominating Sets in the Cartesian Products of Prime Cycles

We study the structure of a minimum dominating set of Cn 2n+1, the Cartesian product of n copies of the cycle of size 2n + 1, where 2n + 1 is a prime.

متن کامل

Total domination number of grid graphs

We use the link between the existence of tilings in Manhattan metric with {1}-bowls and minimum total dominating sets of Cartesian products of paths and cycles. From the existence of such a tiling, we deduce the asymptotical values of the total domination numbers of these graphs and we deduce the total domination numbers of some Cartesian products of cycles. Finally, we investigate the problem ...

متن کامل

On Domination Numbers of Cartesian Product of Paths

We show the link between the existence of perfect Lee codes and minimum dominating sets of Cartesian products of paths and cycles. From the existence of such a code we deduce the asymptotical values of the domination numbers of these graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 59  شماره 

صفحات  -

تاریخ انتشار 1995